A New Variational Approach for Multiplicative Noise and Blur Removal

نویسندگان

  • Asmat Ullah
  • Wen Chen
  • Mushtaq Ahmad Khan
  • HongGuang Sun
چکیده

This paper proposes a new variational model for joint multiplicative denoising and deblurring. It combines a total generalized variation filter (which has been proved to be able to reduce the blocky-effects by being aware of high-order smoothness) and shearlet transform (that effectively preserves anisotropic image features such as sharp edges, curves and so on). The new model takes the advantage of both regularizers since it is able to minimize the staircase effects while preserving sharp edges, textures and other fine image details. The existence and uniqueness of a solution to the proposed variational model is also discussed. The resulting energy functional is then solved by using alternating direction method of multipliers. Numerical experiments showing that the proposed model achieves satisfactory restoration results, both visually and quantitatively in handling the blur (motion, Gaussian, disk, and Moffat) and multiplicative noise (Gaussian, Gamma, or Rayleigh) reduction. A comparison with other recent methods in this field is provided as well. The proposed model can also be applied for restoring both single and multi-channel images contaminated with multiplicative noise, and permit cross-channel blurs when the underlying image has more than one channel. Numerical tests on color images are conducted to demonstrate the effectiveness of the proposed model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of an Iterative Method for Variational Deconvolution and Impulsive Noise Removal

Image restoration, i.e. the recovery of images that have been degraded by blur and noise, is a challenging inverse problem. A unified variational approach to edge-preserving image deconvolution and impulsive noise removal has been recently suggested by the authors and shown to be effective. It leads to a minimization problem that is iteratively solved by alternate minimization for both the reco...

متن کامل

A Weberized Total Variation Regularization-Based Image Multiplicative Noise Removal Algorithm

Multiplicative noise removal is of momentous significance in coherent imaging systems and various image processing applications. This paper proposes a new nonconvex variational model for multiplicative noise removal under the Weberized total variation (TV) regularization framework. Then, we propose and investigate another surrogate strictly convex objective function for Weberized TV regularizat...

متن کامل

The Convex Relaxation Method on Deconvolution Model with Multiplicative Noise

In this paper, we consider variational approaches to handle the multiplicative noise removal and deblurring problem. Based on rather reasonable physical blurring-noisy assumptions, we derive a new variational model for this issue. After the study of the basic properties, we propose to approximate it by a convex relaxation model which is a balance between the previous non-convex model and a conv...

متن کامل

Variational Regularized Bayesian Estimation for Joint Blur Identification and Edge-Driven Image Restoration

The paper presents a novel method for joint blur identification and edge-driven image restoration in variational double regularized Bayesian estimation. The motivation is that the degradation of images includes not only additive, random noises but also multiplicative, spatial degradations, i.e., blur. Traditional nonlinear filtering techniques are observed in underutilization of blur identifica...

متن کامل

Multiplicative Noise and Blur Removal by Framelet Decomposition and l1-Based L-Curve Method

This paper proposes a framelet based convex optimization model for multiplicative noise and blur removal problem. The main idea is to employ framelet expansion to represent the original image and use the variable decomposition to solve the problem. Because of the nature of multiplicative noise, we decompose the observed data into the original image variable and the noise variable to obtain the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017